Three positive solutions to initial-boundary value problems of nonlinear delay differential equations
نویسندگان
چکیده
منابع مشابه
Triple Positive Solutions to Initial-boundary Value Problems of Nonlinear Delay Differential Equations
In this paper, we consider the existence of triple positive solutions to the boundary value problem of nonlinear delay differential equation
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملThe Symmetric Positive Solutions of Three-point Boundary Value Problems for Nonlinear Second-order Differential Equations
In this paper, we are concerned with the existence of symmetric positive solutions for second-order differential equations. Under suitable conditions, the existence of symmetric positive solutions are established by using Krasnoselskii’s fixed-point theorems.
متن کاملExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2009
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2009.1.14